Spring 2021 ECON200C: Discussion 6 - Mechanism Design

May 7, 2021

Introduction

- The design of the institutions could have profound impact on the way agents behave, e.g. first-price auction vs. second-price auction
- mechanism design aims to design the institution satisfying certain objectives, assuming that individuals 1) interact strategically, and 2) hold private information
- each individual has a message (or strategy) space
- designer chooses decision rule as a function of the messages received
- transfers among the individuals are allowed

A General Setting

- individuals denoted by $i \in N = \{1, 2, ..., n\}$ in a finite group
- Society decision space is denoted *D*, and decisions are represented as *d*, *d'*.
- private information represented by a type $\theta_i \in \Theta_i$. We have a type vector $\theta = (\theta_1, ..., \theta_n)$. And let $\Theta = \Theta_1 \times ... \times \Theta_n$
- individual preference is a private value dependent only on type and her decision, $v_i : D \times \Theta_i \longrightarrow \mathbb{R}$.

Setup	Vickrey-Groves-Clarke Mechanism	
00000		

Example

Public Project Example:

A society decision on building a public project or not at a cost c. The cost needs to be equally divided. Here $D = \{0, 1\}$ with 0 representing no building and 1 representing building. Individual *i*'s value from the project is her type, θ_i .

Thus, the utility function could be represented by:

$$v_i(d,\theta_i)=d\theta_i-d\frac{c}{n}$$

Decision Rules and Efficient Decisions

- A decision rule is a mapping $d : \Theta \longrightarrow D$, indicating a choice $d(\theta) \in D$ as a function of θ .
- A decision rule $d(\cdot)$ is *efficient* if

$$\sum_i v_i(d(\theta), \theta_i) \geq \sum_i v_i(d'(\theta), \theta_i)$$

for all θ and $d' \in D$.

In the public project example, the efficient decision rule is $d(\theta) = 1$ when $\sum_i \theta_i > c$ and $d(\theta) = 0$ when $\sum_i \theta_i < c$.

Transfer functions and Social Choice Functions

- transfers provide necessary incentives to allocate efficiently, e.g. tax or subsidize individuals
- a transfer function $t : \Theta \longrightarrow \mathbb{R}^n$ represents the payment that *i* receives(pays) based on the **announcement** of types θ .
- A pair d, t will be referred to as a *social choice function*, and denote it by $f(\theta) = (d(\theta), t(\theta))$.
- The quasi-linear utility that i receives in the end is

$$u_i(\hat{ heta}, heta_i, d, t) = v_i(d(\hat{ heta}), heta_i) + t_i(\hat{ heta})$$

where $\hat{\theta}$ is the announced vector of types and *i*'s true type is θ_i .

Transfer Functions: Feasibility and Balance

- A transfer function is *feasible* if $0 \ge \sum_i t_i(\theta)$ for all θ .
- If not feasible, then the society needs some outside source of transfers.
- A transfer function is *balanced* if $\sum_i t_i(\theta) = 0$ for all θ .
- If only feasible but not balanced, then there is some net loss in utility to society relative to an efficient decision with no transfers at some θ.

Setup	The Revelation Principle	Vickrey-Groves-Clarke Mechanism	Other Literature
000000		0000	00

Mechanisms

- A mechanism is a pair M, g, where $M = M_1 \times ... \times M_n$ is a cross product of message or strategy spaces and $g : M \longrightarrow D \times \mathbb{R}^n$ is an outcome function.
- For each profile of messages $m = (m_1, ..., m_n)$, the resulting decision and transfers are represented by

$$g(m) = (\underbrace{g_d(m)}_{\text{decision}}, \underbrace{g_{t,1}(m), ..., g_{t,n}(m)}_{\text{transfers}})$$

 Notice there is no type specific design, since mechanism designs for all θ. Once the preferences of the individuals are specified, then a mechanism induces a game.

Dominant Strategies

- We start by identifying situations where individuals have unambiguously best strategies(messages).
- A strategy $m_i \in M_i$ is a *dominant strategy* at $\theta_i \in \Theta_i$ if

 $v_i(g_d(m_{-i}, m_i), \theta_i) + g_{t,i}(m_{-i}, m_i) \ge v_i(g_d(m_{-i}, \hat{m}_i), \theta_i) + g_{t,i}(m_{-i}, \hat{m}_i)$

for all m_{-i} and .

• A social choice function f = (d, t) is *implemented* in dominant strategies by the mechanism (M, g) if there exist functions $m_i : \Theta_i \longrightarrow M_i$ such that $m_i(\theta_i)$ is a dominant strategy for each i and $\theta_i \in \Theta_i$ and $g(m(\theta)) = f(\theta)$ for all $\theta \in \Theta$.

implementation

Direct Mechanisms

- A direct mechanism is the special case that uses the social choice function f = (d, t) as the mechanism, that is $M_i = \Theta_i$ and g = f.
- A direct mechanism is *dominant strategy incentive compatible* if θ_i is a dominant strategy at θ_i for each i and $\theta_i \in \Theta_i$.
- A social choice function is *strategy-proof* if it is dominant strategy incentive compatible.

The Revelation Principle

- The Revelation Principle for Dominant Strategies: If a mechanism (M, g) implements a social choice function f = (d, t) in dominant strategies, then the direct mechanism f is dominant strategy incentive compatible.
- Note: the Revelation Principle allows us to restrict our attention to the set of direct mechanisms while finding social choice functions implemented in dominant strategies.

Groves' Schemes

- We start with some efficient decision rule d and then asks what form of transfers are necessary so that d, t is dominant strategy incentive compatible.
- The resulting social choice functions are referred as Groves' schemes.

Vickrey-Groves-Clarke Mechanism ○●○○

Groves' Schemes

Theorem

If d be an efficient decision rule and for each i there exists a function $x_i : \times_{j \neq i} \Theta_j \longrightarrow \mathbb{R}$ such that

$$t_i(heta) = x_i(heta_{-i}) + \sum_{j
eq i} v_j(d(heta), heta_j)$$

then (d, t) is dominant strategy incentive compatible.

Proof skipped.

Vickrey-Groves-Clarke Mechanism

The Pivotal Mechanism

- One simple version of the Groves schemes is the pivotal mechanism described by Clarke.
- Let $x_i(\theta_{-i}) = -\max_{d \in D} \sum_{j \neq i} v_j(d, \theta_j)$, then the transfer function becomes

$$t_i(heta) = \sum_{j
eq i} v_j(d(heta), heta_j) - \max_{d \in D} \sum_{j
eq i} v_j(d, heta_j)$$

The Pivotal Mechanism

- The transfer is always non-positive and thus always feasible.
- If i's presence makes no difference in the maximizing choice of d, then t_i(θ) = 0.
- Otherwise, *i* is pivotal, then *t_i* represents the loss in the value imposed on other individuals due to the *i*'s presence.
- Internalizing Externalities: each individual's transfer function takes into account the marginal social impact (on other individuals) made by her announcement of θ_i.

Bayesian Mechanism Design

- We only focus on direct mechanism design with dominant strategy incentive compatible cases.
- This is a very strong condition as it requires truthful revelation of preferences being dominant strategy.
- If we introduce probabilistic beliefs over the types of other individuals, the mechanism design problem is called *Bayesian Mechanism Design*.
- It weakens the requirement of dominant strategy incentive compatibility to a Bayesian incentive compatibility condition.

Implementation

- Both Direct and Bayesian Mechanism Design use the revelation principle as a tool.
- It only relates one equilibrium of the mechanism to the truthful strategies.
- Other equilibria could exist rather than direct mechanism.
- The *implementation* literature keeps track of all equilibria and works with the space of indirect mechanisms.