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Abstract

This paper presents an investigation of the economic consequences of the zero-COVID
policy implemented by the Chinese government as a pilot experiment in using big data for
country management from 2020 to 2022. Our study includes an original county-daily panel
data set on the COVID-19 Risk Level issued by the State Council of the People’s Republic
of China (PRC). To measure economic activities, we used satellite data on night lights and
PM2.5, and geographical data on population mobility. Our findings indicate that the zero-
COVID policy did not result in significant economic loss in 2021. However, in 2022, when
the Omicron variant emerged, a stricter zero-COVID policy led to a 30% decline in mobility,
a 1.17% decrease in PM2.5 and a 7.7% reduction in night lights. Based on our calculations,
China experienced a 3.9% loss in GDP as a consequence of the implementation of the zero-
COVID policy in 2022.
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1 Introduction

The COVID-19 pandemic severely disrupted general economic activity as human mobility was

restricted, social gatherings were banned, and businesses were halted. However, research that

examines the effects of the pandemic on the economy has focused primarily on specific areas, such

as unemployment, consumer spending, labor demand, and pollution. There is a demand for a

comprehensive assessment of the economic consequences of the pandemic and the corresponding

anti-contagion policies. Additionally, most of the research has focused only on the year 2020 and

has not considered the subsequent periods 2021 and 2022. Our paper aims to fill this gap.

In this paper, we compile a unique dataset of China’s COVID-19 risk level on prefecture/county

level, which is constructed based on big data provided by the State Council of the People’s Repub-

lic of China (PRC). We examine the impact associated with China’s COVID-19 policies on several

salient economic indicators from 2020 to 2022. Specifically, we analyze the effects on mobility, air

pollution measured by the concentration of fine particulate matter (PM2.5) and night lights. We

rely on a difference-in-differences framework for identification, with the assumption that, condi-

tional on daily confirmed COVID-19 cases and other prefecture-day level controls, the difference

in economic indicators between regions with and without COVID-19 containment policies would

remain stable over time.

From February 17, 2020, after one month of the pandemic outbreak and a series of strict

lockdown measures, China has utilized big data and established a nationwide risk-level system,

which aimed to contain the spread of the virus within communities while keeping the economic

costs to a minimum, also referred to as “zero-COVID” policy. To be specific, China implemented

a nationwide risk response system that mandated local officials to classify communities into low-,

medium-, and high-risk levels based on recent confirmed COVID-19 cases and other factors. Areas

rated as medium- and high-risk imposed more stringent containment measures compared to low-

risk areas, such as stay-at-home order, mass testing, contact tracing and mobility restrictions.

Therefore, the classification of an area as risk or non-risk is closely linked to the stringency of the

zero-COVID policies enforced by local authorities.

It is important to evaluate the economic consequences of zero-COVID policy in the context
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of both economics and politics. Zero-COVID policies are considered as the Chinese government’s

pilot experiment in using big data for national management and crisis response.1 In 2021, China’s

media outlets portrayed the low mortality rate from COVID-19 as the success of this risk-level

system. Moreover, China’s GDP growth rate reached 8.1% in 2021. The Chinese government has

been promoting their zero-COVID policies as a model for the rest of the world to follow, claiming

that it has been effective in both preserving lives while maintaining economic growth. However,

in 2022, the emergence of the Omicron variant resulted in shutdowns of financial, manufacturing,

and exporting centers, including Shanghai, Shenzhen, Guangzhou, and Changchun, leading to the

failure of China’s zero-COVID policy to safeguard people’s lives and economic vitality (Mark and

Schuman, 2022).

Using an original daily panel data at the prefecture/county-level on COVID-19 risk levels

collected from the website of the State Council, our study firstly shows that on average the zero-

COVID policy took 21 days to eliminate local COVID-19 cases in 2021, but it took approximately

50 days in 2022. Our second finding reveals a 30% reduction in inter-prefecture traffic flow after

a prefecture has been classified as a Risk region in either 2021 or 2022. Furthermore, our study

revealed that the probability of being classified as a Risk region was positively and significantly

associated with changes in PM2.5 and night lights in 2021, while the effects of the zero-COVID

policy are negligible. However, in 2022, the zero-COVID policy led to a decrease in PM2.5 con-

centration by 1.17% and a reduction in night lights by 7.7%. The differences in policy effects

observed between 2021 and 2022 can be primarily attributed to differences in the stringency of the

zero-COVID policy. In 2022, with the emergence of the Omicron variant and stricter zero-COVID

policies, the negative policy effects on economic activities became significantly larger. Our back-

of-the-envelope calculations indicate that the zero-COVID policy caused China to experience a

reduction of around 3.9% in GDP in 2022.

The previous studies on COVID-19 pandemic in China have two limitations. First, the major-

ity of studies draw their conclusions focusing on lockdown policies in the early stage of 2020 rather

than zero-COVID policies in 2021 and 2022.2 To date, only one paper has estimated the economic
1Check out the coverage provided by state-controlled media: https://www.tsinghua.edu.cn/info/1182/

51343.htm
2For example, see Fang et al. (2020a); He et al. (2020); Fang et al. (2020b); Liu et al. (2020). For a systemic
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impacts using truck flows in 2020 and 2021 (Chen et al., 2022a). However, it is worth noting

that the policy object under study in this paper is prefecture-level city lockdown, rather than

zero-COVID policy, therefore it could not account for less stringent policies such as restrictions on

human mobility, the establishment of body temperature checkpoints, neighborhood sanitization,

monitoring of suspected COVID-19 cases, and other anti-contagious measures at the local com-

munity level. Second, they primarily focused on the economic consequences of COVID policies

from a single aspect. Dang et al. (2023); Gong et al. (2022); Zhang (2021) focus on the COVID-19

policies’ adverse effects on labor market outcomes such as unemployment, wage, and labor market

participation. Using high-frequency transaction data, Chen et al. (2021) provided evidence that

the pandemic has caused a sharp decline in consumption immediately after the COVID outbreak.

Fang et al. (2020b) documented that the human mobility restrictions imposed by Chinese govern-

ment in the early phase of the pandemic effectively controlled the spread of the virus. Despite

the seemingly high economic and social costs, researchers have also shown that the COVID-19

pandemic significantly improved air quality and reduced environmental pollution (He et al., 2020;

Brodeur et al., 2021).

This paper makes three primary contributions. First of all, to be best of our knowledge, our

paper is the first empirical study that examines the economic impact of the zero-COVID policy

spanning from 2020 to 2022. We offer evidence of the heterogeneous outcomes linked to the

implementation of the zero-COVID policy during the three-year pandemic. This research provides

insight into the efficacy of the zero-COVID strategy in contributing to China’s rapid economic

recovery in 2021, and also highlights the disruptions caused by the escalating pandemic and the

frequent re-imposition of the zero-COVID policy in 2022. Second, we compiled a unique dataset

that reflects the stringency of China’s zero-COVID policy. Our dataset provides daily risk level

indices at the county level in China from April 2021 to December 2022, including 2853 counties and

368 prefecture-level cities. Local governments have implemented various anti-contagion policies

based on risk ratings. The granularity of our dataset could provide new insights and serve as

a valuable tool for future research in general to better understand the economic consequences

of the pandemic and the zero-COVID policies in China. Lastly, our paper contributes to the

review, see Huang et al. (2023)
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existing literature with an in-depth analysis of the economic impact of the COVID-19 policies

along three dimensions: human mobility, air pollution, and night lights. The three outcomes in our

research offer varying insights into economic performance, such as transportation, manufacturing,

and service sectors. Furthermore, the inter-prefecture traffic mobility index and PM2.5 can be used

as proxies for short-term economic activities, particularly human mobility and factory productions.

On the other hand, night lights can be used as proxies for medium-term economic activities.

The remainder of this paper is structured as follows. Section 2 details the policy background

and data. Section 3 delineates the identification strategy. Section 4 presents the main results and

performs robustness checks. Section 5 concludes.

2 Policies and Data

In this section, we cover basic facts and data source. Initially, we outline China’s COVID-19

policies, encompassing lockdown and the zero-COVID. Then, we describe the sources of data for

mobility, pollution, and night lights. Finally, we describe the control variables, which include daily

confirmed cases and weather.

2.1 China’s COVID-19 Policy — Lockdown (Jan 23 — Feb 16, 2020)

With the initial COVID-19 outbreak in Wuhan in 2020, the Chinese government implemented

unprecedented prefecture lockdown to contain the virus. Stringent measures were put in place in

the locked-down prefectures, including the prohibition of traffic leaving, the imposition of stay-

at-home orders, and the enforcement of quarantine measures. It’s worth mentioning that anti-

contagion policies were also enforced in prefectures without lockdowns, albeit with less strict

measures compared to the locked-down ones. According to Qiu et al. (2020), by February 16, 2020,

more than 250 prefectures had implemented such measures.3 Starting from February 17, 2020, the

Chinese government implemented a policy package to precisely contain COVID-19 transmission at

the community level. As a result, the central government no longer recommended prefecture-level
3“In all Chinese cities, the Spring Festival holiday was extended, and people were advised to stay at home when

possible, enforce social distancing and maintain good hygiene.” (He et al., 2020)
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lockdowns, as they were considered too detrimental to the economy.

The “Lockdown” in this study is defined as China’s major COVID-19 policy from January 23

to February 16, 2020. Our data on lockdowns come from He et al. (2020), who originally collected

from Wikipedia, various sources of news media and government announcements.

2.2 China’s COVID-19 Policy — zero-COVID (Feb 17, 2020 — Dec

25, 2022)

Following the one-month-long enforcement of strict lockdowns and nationwide public health

interventions, the central government sought to revive the economy and loosen the lockdown

measures. (Gong et al., 2022). On February 17, Prevention Guidance for Novel Coronavirus

Pneumonia (version 5) was issued by the State Council and National Health Commission of China.4

This guidance mandated local governments to classify COVID-19 risk at the community level.

Any community that reported COVID-19 cases would be categorized as either a medium- or high-

risk zone, and corresponding containment measures and closures would be enforced. However,

in principle, low-risk communities should only impose quarantines on individuals traveling from

medium- or high-risk areas and should not limit the traveling of residents or economic activities.

The objective of this policy is to eradicate COVID-19 transmission at the local level by assigning

each community a risk level and implementing corresponding measures. This is commonly known

as the zero-COVID policy.

In order to comply with the guidance, starting from March 2020, the State Council of China

began to release a national COVID-19 risk level system on a regular basis through its website.

This system categorizes communities within the 2853 counties into high-, medium-, or low-risk

groups and updates on a daily basis. All zero-COVID policies, including quarantine, closures of

public places, travel restrictions, Travel QR Codes, etc., were implemented based on this system.5

The COVID-19 risk level system is viewed as a pilot experiment in utilizing big data for national
4Prevention Guidance for Novel Coronavirus Pneumonia (version 5): http://www.nhc.gov.cn/jkj/s3577/

202002/a5d6f7b8c48c451c87dba14889b30147.shtml
5Check out the news from State Council’s website: http://www.gov.cn/fuwu/2020-03/25/content_5495289.

htm
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management and crisis response.6 In particular, the risk level is reported by local governments and

compiled by National Health Commission of China.7 The criteria used to designate a community

as either a Risk or non-risk area are based on the presence of confirmed cases of COVID-19 reported

within recent days. It is important to note that local officials have some flexibility to adjust the

coverage range of medium- or high-risk areas. In cases of overreaction, neighboring communities

without any cases may still be classified as medium- or high- risk.

Our data on risk level information are drawn from China’s COVID-19 Risk Level Database, a

newly constructed database containing COVID-19 risk level information for communities within

the 2853 counties on a daily basis from April 02, 2021 to December 15, 2022, which marks the end

of the zero-COVID policies. This information was collected from the State Council’s website (see

Appendix A for more details). To the best of our knowledge, this is the first dataset to document

China’s county-level daily implementation of the zero-COVID policy during 2021 and 2022.8 We

define a county as Risk region on a given day if it contains at least one community categorized

as medium- or high- risk according to the aforementioned criteria. We define a prefecture as Risk

region on a given day if at least one community within it is categorized as Risk area.

Table 1 shows that on average, from April 02, 2021 to December 15, 2022, 74 counties were

classified as Risk regions on a daily basis. Averagely, each county was classified as Risk region for

a duration of 16 days by December 15, 2022 (the end of zero-COVID). Figure 1 shows that the

aggregate nationwide daily confirmed cases correlates positively with number of counties with Risk

areas.9 Furthermore, we have noticed a steep rise in the number of counties categorized as Risk

regions beginning in July 2022, while the number of confirmed cases experienced a sharp surge

starting only after October 2022. These trends suggest that, comparing to 2021, local officials may

be more inclined to enforce stricter zero-COVID policies or potentially overreact with their policies

in response to the more transmissible Omicron variant in 2022. This finding is further supported

by Figure 2, which illustrates a comparison between the green bar and blue bars. The results show
6Check out the coverage provided by state-controlled media: https://www.tsinghua.edu.cn/info/1182/

51343.htm
7The term “risk” used in this context is distinct from its traditional usage in economic research, which involves

prediction and expectation. Here, “risk” refers to the assessment of COVID-related risk based on the current
presence of COVID-19 cases.

8The previous research mainly focus on 2020 or lockdowns, rather than 2021 and 2022 or zero-COVID.
9Shanghai is excluded from the sample due to a skyrocketed increase in COVID-19 cases during April 2022.
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that in 2022, there were much more counties classified as Risk regions for longer duration compared

to 2021. Additionally, Figure A2 indicates that only a small fraction of counties were classified as

Risk regions in 2021, whereas by the end of 2022, 1700 out of 2853 counties were classified as Risk

regions.10

There are three things worth noting. Firstly, our binary variable of a county classified as Risk or

non-risk region does not differentiate the level of intensity of treatment. For instance, a county with

only one community designated as Risk area and another county with 100 communities designated

as Risk areas are likely to receive varying impacts from zero-COVID policies. Although there will

be differences in the treatment, we are unable to distinguish between them. Secondly, our risk level

data does not provide information on the specific zero-COVID policies implemented in each county.

For example, if two counties with the same number of communities are classified as Risk areas,

County A may require all residents to stay home, while County B may only quarantine individuals

who have tested positive for COVID-19. The bottom line is that as long as a county/prefecture

is categorized as Risk region, corresponding zero-COVID policies will be implemented in this

region. Finally, a prefecture-wide lockdown remains as an option within the zero-COVID policy

framework for the years 2021 and 2022,11 despite variations in official terminology like “citywide

static management”, “silence period” and so on. Our research does not aim to differentiate between

lockdown and other aspects of the zero-COVID policy during 2021 and 2022. Instead, we regard

our estimates as capturing the average impact of a range of interventions, including both stringent

measures like lockdowns and milder restrictions.

2.3 Mobility

We use the data from the Baidu Qianxi (Migration) website, which is publicly shared by Hu

et al. (2020), to construct our measures of human mobility. Baidu is the largest search engine in

mainland China. Their migration data are based on real-time location records for every smart

phone that uses the company’s mapping app, and thus can accurately reflect population mobility
10See Panel B of Table 1
11Prominent cities such as Xi’an and Shanghai implemented lockdown measures, with Xi’an being in lockdown

for approximately a month starting from the end of 2021, and Shanghai undergoing a lockdown for about four
months during the first half of 2022.
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between cities.

The Baidu Qianxi data set covers 120,142 pairs of prefecture-level cities per day for 364 such

cities. For each prefecture-level city, Baidu Migration provides the following two sets of information:

(1) the top 100 origination cities for the population moving to the target city and the corresponding

percentages of the inflow population that originated from each of the top 100 origination cities;

(2) the top 100 destination cities for the population moving out of the city and the corresponding

percentages of the outflow population that go into each of the top destination cities (Fang et al.,

2020b). The mobility data used in this research cover the periods from January 1, 2020, to March

27, 2021 and from September 2, 2021, to April 21, 2022.

To achieve our research objectives, we converted the raw mobility data into two daily indices

at the prefecture level: inflow mobility and outflow mobility. To compute the inflow mobility

index for a given prefecture-level city, e.g. City A, we averaged the outflow values from all other

cities directed toward City A, based on Baidu Qianxi data for a specific date.12 Specifically, this

average is derived from the percentages of outflow population originating from cities that include

City A in their list of top 100 mobility destinations. Similarly, for the outflow mobility index, we

followed the same procedure but substituted inflow values for outflow values in the Baidu Qianxi

data. When City A implements the zero-COVID policy and assuming inter-city traffic among

other cities remains constant, the share of population mobility associated with City A relative to

the total population mobility of other cities is likely to decline due to imposed restrictions. This

anticipated decrease would be reflected in the mobility indices we have devised.

2.4 PM2.5

The county-level weekly data on PM2.5 is derived from the Aerosol Optical Depth (AOD)

data, which are from NASA’s Global Modeling and Assimilation Office (GMAO) released Modern-

Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). Comparing

to station-level PM 2.5 data, satellite data cover all the counties in China and are widely used
12In this context, the outflow mobility from other cities to City A is essentially considered as inflow mobility for

City A.
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in economic research.13 The data is reported with a nested resolution of 50km × 60km at a

hourly base. Firstly, the grid-level PM2.5 concentration is computed using the formula provided

by Buchard et al. (2016). Next, to achieve a higher resolution, we split each grid into smaller grids

of 5km x 6 km using an upsampling method.14 Lastly, we adopt the Raptor Join method described

in Singla et al. (2021) to aggregate the data from the smaller grids into county-level for each hour

and compute the weekly sum for each county.15

2.5 Night Lights

China’s government has not released any county or prefecture-level GDP data for the years 2020

to 2022. Even if such data were available, there are concerns about the possibility of manipulation

and over-reporting (Martinez, 2022; Angrist et al., 2021). To obtain a consistent measure of local

economic activity across China, we utilize visible lights emitted from the Earth’s surface at night

as a proxy — night lights (nighttime light) data have already been recognized to be capable of

accurately capturing changes in local economic activity (Hodler and Raschky, 2014).16

We obtain the night lights data from the Visible Infrared Imaging Radiometer Suite (VIIRS)

on a monthly basis,17 covering the period from 2019 to September 2022. To filter out noise from

sources such as aurora, fires, and other temporary lights, we employ a threshold of 0 and 1.5(µ+3σ),

following Li et al. (2020); Gibson (2021).18 The spatial resolution of VIIRS image data is 413m,

the absolute radiation values in the unit of Watts/cm2/sr (Chen et al., 2022b). We use the same

Raptor Join method describe in the PM 2.5 section to aggregate the grids at county level by month.

2.6 Weather Data

We obtain the weather data including precipitation and temperature from Global Historical
13see Fu et al. (2021); Chen et al. (2022c); Sager and Singer (2022).
14If we do not upsample, there will be missing values for some counties that are smaller than 50km × 60km in

size.
15To account for the daily air pollution’s high volatility, we follow He et al. (2020) and aggregate the PM 2.5 at

the weekly level.
16Also see Harari (2020); Storeygard (2016); Henderson et al. (2018) and Donaldson and Storeygard (2016) for a

comprehensive review of economic literature using night lights as proxy for economic actives.
17See Elvidge et al. (2017). The raw data from VIIRS is at monthly basis.
18See Figure A3, an example of filtered data of Night Lights in March 2022 obtained from VIIRS, combine with

the shapefile of China’s county boundary.
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Climatology Network form the National Oceanic and Atmospheric Adminictration (NOAA).19 We

use the inverse distance weights to calculate the daily prefecture-level weather data.

2.7 Daily Confirmed COVID-19 Cases

We gather the daily confirmed COVID-19 cases provided by the Dingxiangyuan website, which

compiles official daily COVID-19 cases at the prefecture level.

3 Identification

Our empirical analysis relies on two sets of difference-in-differences (DiD) models to identify

the impact of the zero-COVID policy on the pandemic’s dynamics during local outbreaks and

its subsequent influence on various measures of economic activity, including traffic mobility, air

pollution, and night lights. We employ a DiD specification as our baseline regression to estimate

the relative change in the outcome variable between the treated and control groups. The model is

specified as follows:

Yit = βDit + Xit ×α+ µi + θt + εit

where Yit represents the outcome variable of interest in region (prefecture or county) i during

period (day, week or month) t. Dit is a dummy variable indicating the treatment status in region

i at time t, where it equals 1 if any community within this region is classified as a Risk area and 0

otherwise. Regions with Risk areas would be subject to the enforcement of zero-COVID policies.

Xit are the control variables. µi represents prefecture (county) fixed effects, which control for

time-invariant prefecture (county)-level factors, and θt represents time fixed effects, which control

for shocks that are common to all regions during a given time period.

The underlying assumption for the DiD estimator is that the zero-COVID policy implementa-

tion is not driven by unobserved factors that could also systematically influence the differences in

outcome variable between regions with Risk areas and regions without Risk areas. This assump-

tion is unverifiable as it requires knowledge of the counterfactual scenario, but we can investigate
19See Menne et al. (2012)
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whether the parallel trends assumption is satisfied before the date when any areas within these

regions were classified as Risk areas. To do so, we performed an event study approach to estimate

the dynamic effect of the treatment. Moreover, we can understand how long the treatment effect

persists. Our model is as follows:

Yit =
∑
k ̸=−1

βkD
k
it + Xit ×α+ µi + θt + εit

where Dk
it represents the indicator for i’s treatment status at k periods relative to period t. It

takes a value of 1 if region i has any areas classified as Risk was k periods relative to period t and

0 otherwise. We exclude k = −1 so that the dynamic effect is compared to the period immediately

before initial treatment. The parameter of interest βk estimates the effect of zero-COVID policy

k periods after/before the implementation. We expect the pre-trends to be parallel, as βk would

not be significantly different from zero for k ≤ −2. Intuitively, economic activities were restricted

by the zero-COVID policy in the enforced regions and slowly recovered after the implementation

was over, thus we expect βk to be negative for k ≥ 0 and converge to zero as k increases.

To investigate the heterogeneity of the effect of the Lockdown and zero-COVID policy over

time, we perform separate DiD regressions and event studies for the years 2020, 2021, and 2022.

As in some regions the zero-COVID policies were triggered multiple times across 2021 and 2022, we

exclude the regions that have already been classified as Risk during 2021 from our subsample used

in the analysis for year 2022.20 As the risk level data is unavailable for 2020, we use the lockdown

data from He et al. (2020) to generate the treatment status for year 2020. In the following sections,

we present our empirical results for different outcome variables and provide more details on the

regression specifications used for our analysis.
20We did not exclude regions that have experienced lockdown in 2020 in any of these regressions, because, in

fact, almost all prefectures in China implemented some level of restriction in mobility during the initial outbreak
of the pandemic. On the other hand, the share of regions that were at Risk during 2021 is relatively small so the
subsample after excluding these regions could still be representative.
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4 Results

4.1 COVID-19 Cases

Before we examine the economic consequences of zero-COVID policies, we apply an event study

approach to examine the dynamic effects of the risk level on COVID-19 cases in China, with the

goal of examining the trends in COVID-19 cases before and after the implementation of the zero-

COVID policy and estimating the average time it took from the launch of zero-COVID policy to

when the outbreak was under control. To achieve this, we estimate the following model:

Caseit =
−2∑

k=−30

βkD
k
it +

50∑
k=0

βkD
k
it + µi + θt + εit

where Caseit represents confirmed COVID-19 cases in prefecture i at date t. Dk
it represents the

indicator for prefecture i’s treatment status at k periods relative to date t. Given the potential

reverse causality between COVID-19 cases and risk level status and potential anticipation21, we

are not estimating a causal impact, but examining the correlation. The coefficient of interest βk

estimates the correlation between the status of Risk or non-risk k periods after/before the risk level

classification and the daily confirmed COVID-19 cases. The dynamic effect results are displayed

in Figure 3.

We begin by presenting the dynamic effect of the 2020 lockdown implementation in Figure 3a.

Prior to the lockdown, the dynamic effect is negative. Subsequently, the effect remains positive for

approximately 50 days after the initial lockdown, and reaches its peak at 40 around 21 days later,

before starting to decline towards 0. It is unsurprising to observe a surge in daily confirmed cases

following a lockdown, as extensive COVID-19 testing is likely to start after the lockdown is imposed

when the virus has already spread for some time. As a result, the daily confirmed cases during

the weeks following the lockdown tend to be higher on average than before it. Additionally, the

extensive variation in the estimated dynamic effect and the predominantly insignificant estimators
21See Goodman-Bacon and Marcus (2020) for a review of challenges of causality identification in COVID-19

research.

12



suggest that some prefectures prefectures may have implemented precautionary policies before

potential increases in cases.

In Figure 3b and 3c, we present the results of our event study analysis for the years 2021 and

2022, respectively. Our findings suggest that the dynamic effect of zero-COVID policy on COVID-

19 cases differs over the two years. Specifically, in 2021, the dynamic effect increases from day 0

to day 7 and then gradually declines, becoming negligible after day 21. In contrast, in 2022, the

dynamic effect remains high for a more extended period, it takes around 25 days to control the size

of the pandemic to about 5 cases, and around 50 days to decrease the magnitude close to 0. The

peak of the curve is also much higher than in 2021, with an average of more than 10. Additionally,

the variation of the dynamic effect in 2022 is much larger than in 2021. These findings suggest

that while some prefectures were able to reduce COVID-19 cases quickly by implementing stringent

measures immediately after they were classified as Risk regions, others found it more challenging

to contain the spread of the virus effectively in 2022.

Overall, these findings suggest that the risk level policy in China has been effective in control-

ling the spread of COVID-19 in 2021, with the number of cases peaking shortly after the initial

intervention and declining afterwards. However, in 2022, the emergence of new virus variants,

such as the Omicron, poses challenges to the effectiveness of the policy, as it took much longer to

control the pandemic in 2022 compared to 2021.

Additionally, these results highlight the considerable variation in the implementation of the

zero-COVID policy across different regions in China, with some prefectures experiencing a rapid

decline in cases immediately after being classified as Risk regions, while others had a slower decline

or even an increase in cases before a decline.

4.2 Traffic Mobility

Next, we investigate the effect of the zero-COVID policy on mobility. Our models are as follow:

Mobilityit = βDit + Xit ×α+ µi + θt + εit
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Mobilityit =
−2∑

k=−30

βkD
k
it +

50∑
k=0

βkD
k
it + Xit ×α+ µi + θt + εit

where the dependent variable Mobilityit has two measures: inflow and outflow traffic mobility

index at prefecture i on date t, taking the natural log. For the sample period of 2020, Dit is an

indicator variable for lockdown or not.22 For the sample period of 2021 or 2022, Dit is a binary

variable equal to 1 if any community within this prefecture i at date t is classified as a Risk area

and 0 otherwise. We control prefecture fixed effects by µi and date fixed effects by θt. It should be

noted that the timing of the risk level classification and the adoption of corresponding zero-COVID

policies may be correlated with the severity of COVID-19. We therefore include daily confirmed

COVID-19 cases in the matrix of prefecture-day level controls Xit. We also include weather factors

in Xit. The standard errors are clustered at the prefecture level. We estimate the effect of the

zero-COVID policy on mobility separately for year 2020, 2021, and 2022.

The DiD regression results in Table 2 show that the impacts of the zero-COVID policy on inflow

and outflow mobility in 2021 and 2022 are significantly negative. However, the impact of lockdown

on mobility in 2020 is negligible. In columns (3) and (4), the coefficients for both inflow and

outflow traffic mobility during 2021 and 2022 are approximately -0.3, indicating a 30% decrease in

traffic flow between a prefecture and other prefectures after it is listed as Risk region. This result is

significant at the 1% level. In columns (1) and (2), the magnitude of the coefficient is only around

-0.02, suggesting only a 2% change in traffic mobility, which is not significant. The R-squared

for all regression specifications indicate that the models explain a considerable proportion of the

variance, lending credibility to our estimation.

We present the dynamic effects of the lockdown and zero-COVID policy implementation on

inflow and outflow traffic mobility in Figure 4 and 5, respectively. The patterns are similar for the

two sets of figures within the same year. Figures 4a and 5a display the dynamic effect of lockdown

on inflow and outflow mobility in 2020. There is no significant trend in the pre-treatment periods,

indicating that the treatment does not affect mobility before the launch of the lockdown. Both

mobility measures experienced a significantly negative effect immediately after the lockdown and

stopped the decreasing trend within one week. There are sharp increases in mobility that happened
22For the sample period of 2020, we use similar setting with He et al. (2020)
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during the third week after the lockdown, which may be due to the fact that the lockdown duration

in 2020 was clustered around 20 days, and the mobility increase reflected the lifting of restrictions.

This pattern help us to explain the insignificant lockdown effect in Table 2, On average, a significant

positive rebound in traffic flow during the third week offsets the negative effects observed in the

first two weeks.

In Figure 4b and 5b, we present the effect of zero-COVID on inflow and outflow mobility in

2021. The figures show a significantly negative effect that occurs immediately after the prefectures

were classified as a Risk region, remains at a large effect size for around 15 days, and gradually

returns to null around 30 days after the initial treatment. Regarding the impact of zero-COVID

policy on mobility in 2022, as displayed in Figure 4c and 5c, we observe almost an identical pattern

as in 2021, while the magnitude of the dynamic effects in 2022 was larger than in 2021 at its peak.

There are two possible reasons to explain this phenomenon. Firstly, it could be due to the more

stringent implementation of the zero-COVID policy, which led to greater restrictions on mobility.

Secondly, the release of the Travel Codes Tracker system could have also contributed to this effect

by limiting travel and mobility across regions. In early 2020, despite the virus being more lethal,

only individuals traveling from Wuhan were required to undergo quarantine 23. However, in 2021

and 2022, anyone with a travel history to medium- or high-risk areas within 14 to 21 days were

required to undergo mandatory quarantine at their own expense. Individuals would be tracked by

the combination of Travel Code and the risk level system 24. With the higher expected cost for

traveling, it is reasonable to observe larger negative effect on the inter-prefecture traffic flow in

2021 and 2022, as compared to 2020.

In all event studies in 2021 and 2022, we observe that the pre-trend has a dip around 3 days

before the enforcement of the zero-COVID policy. This suggests that people observed the COVID-

19 cases and voluntarily avoided entering and leaving the region. Nevertheless, we believe that

this will not harm the credibility of our DiD estimation as the scale of the pre-treatment change

due to anticipation is relatively small compared to the post-treatment changes in inter-prefecture
23See Prevention Guidance for Novel Coronavirus Pneumonia (version 4): http://www.nhc.gov.cn/xcs/

zhengcwj/202002/573340613ab243b3a7f61df260551dd4/files/c791e5a7ea5149f680fdcb34dac0f54e.pdf
24See the reports on China’s truck drivers stuck in the quarantine rules and QR trackers:https://www.reuters.

com/world/china/china-truckers-use-fake-travel-records-clean-drivers-dodge-covid-rules-2022-03-30/
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traffic mobility.

It is important to note that the impact of zero-COVID policy on traffic mobility may vary

across regions, depending on the severity of the pandemic and the specific measures taken to

restrict mobility. Nonetheless, our results suggest that the zero-COVID policy has been effective

in restricting inter-prefecture mobility, which could contribute to controlling the spread of the virus,

while also negatively impacting the transportation industry and other related sectors. It should

be emphasized that the measured effect is a combination of the traffic restriction effect and the

“voluntary” precaution effect of the Travel Code tracker system. Furthermore, since the outcome

variables are inter-prefecture traffic flows, the effect could not be attributed to within-prefecture

traffic.

4.3 Pollution

We proceed by examining the influence associated with the zero-COVID policy on PM2.5

concentration levels in China from 2020 to 2022. Specifically, we fitted the following equations:

Pollutionit = βDit + Xit ×α+ µi + θt + πit,jm + εit

Pollutionit =
−2∑

k=−5

βkD
k
it +

5∑
k=0

βkD
k
it + Xit ×α+ µi + θt + πit,jm + εit

where Pollutionit represents the average PM2.5 concentration level at county i during week t,

taking natural log. Here, we aggregate the hourly PM2.5 data into week level to average out the

high volatility of the daily air pollution, following He et al. (2020). For the sample period of 2020,

Dit is a indicator for lockdown launched in county i during week t or not. For the sample period

of 2021 or 2022, Dit is a binary variable equals 1 if any community within county i during week

t is classified as a Risk area and 0 otherwise. We control county fixed effects µi and week fixed

effects θt. Xit include daily confirmed COVID-19 cases and weather factors such as temperature

and precipitation. πit,jm denotes prefecture by month fixed effects, taking value of 1 for any county

i within prefecture j during month m including week t and 0 otherwise. We control prefecture by

month fixed effects to account for time-variant regional conditions shared by counties within the
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same prefecture in a given month. The standard errors are clustered at the county level.

Table 3 reports our DiD regression results. In column (1), we replicate the estimations used

in He et al. (2020) and estimate the impact of lockdown on PM2.5 pollution levels in 2020. Our

result is similar to theirs. In columns (2) - (5), we estimate the influence of implementing the zero-

COVID policy on PM2.5 pollution levels in 2021 and 2022 and our results show an ambiguous

policy effect.

Different from the lockdown effects found in column (1) of Table 3 in 2020, our findings suggest

that the zero-COVID policy may not significantly reduce pollution levels in 2021. Column (2) shows

a significantly positive correlation between the implementation of zero-COVID policy and PM2.5

concentration in the baseline regression. We further control for prefecture by month fixed effects in

column (3), and the coefficient remains significantly positive but with a smaller magnitude. This

suggests that potential time-variant prefecture-level factors that are positively correlated with the

risk level status may contribute to the positive change in PM2.5 pollution level. Moreover, some

time varying county-level factors might be correlated with both the probability of being classified as

Risk region and pollution concentrations. For example, Urban counties may have a higher chance

of being classified as Risk regions and may also experience faster increases in PM2.5 pollution levels

than their rural counterparts due to their larger number of manufacturers and motor vehicles that

elevate PM2.5 pollution. Overall, in 2021, county-specific growth trend of pollution appears to

outweigh the influence of the zero-COVID policy.

In columns (4) and (5), we find that the policy effects become significantly negative in 2022.

The zero-COVID policy reduces the PM2.5 concentration by 1.2% to 3.5%. This is expected

because the zero-COVID policy imposes more stringent restrictions on economic activities in 2022.

As a result, similar to the scenario in 2020, counties with Risk areas experienced a significant

reduction in PM2.5.

To further explore the influence of zero-COVID policy on pollution levels, we present our event

study analysis in Figure 6. We first replicate the model of He et al. (2020) in Figure 6a for the

dynamic effect of lockdown policy on pollution levels in 2020. Then we perform event studies for

2021 and 2022. Figure 6b illustrates the dynamic effect of zero-COVID on PM2.5 concentration in
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2021, showing a slightly decreasing trend after the counties were classified as Risk areas, but with

an increasing trend starting from week 3, and a positive and significant effect in weeks 4 and 5.

In contrast, Figure 6c shows that in 2022, the treatment effects is negative in the first three weeks

after the counties are categorized as Risk region. In both figures, the pre-trends are consistent

with the parallel trends assumption as the coefficients prior to the treatment are all close to zero

and statistically insignificant. Combining the results from our baseline DiD regression, we find

that the zero-COVID policy in 2021, unlike the strict lockdown implementation in 2020, does not

bring substantial improvement to air pollution levels as the restriction imposed by zero-COVID

policy is limited within a county rather than the entire prefecture. However, the change in PM2.5

concentration becomes larger and more significant when counties are categorized as Risk regions

with more stringent zero-COVID policy, as seen in 2022.

As discussed in Sun and Abraham (2021), the event study approach requires relatively strong

assumptions on the homogeneity of treatment effect, especially over time and across individuals,

to deliver consistent estimates. These assumptions are likely to be violated in our context of

zero-COVID policy, as the treatments are implemented across multiple time periods and local

government could endogenously choose the stringency of their policy implementation and result in

heterogeneous treatment effects. In order to overcome this potential identification issue and allow

for heterogeneity in treatment effects, we apply the method proposed by Sun and Abraham (2021)

and present the robust estimators in our figures. In Figure 6, it can be observed that the robust

estimators follow a similar pattern to the regular dynamic effect estimators and our results are

robust to the potential heterogeneous treatment effects.

In conclusion, our findings reveal ambiguous effects of the zero-COVID policy on PM2.5 con-

centration level in 2021 and 2022. In 2021, when the zero-COVID policy was less stringent, the

county-specific growth trend of pollution appears to outweigh the influence of the zero-COVID

policy. In 2022, with the more stringent implementation of the zero-COVID policy, it took an

average of three weeks for PM2.5 concentration to return to its original level. This suggests a

corresponding three-week decrease in industrial production and traffic flow within the county. It

is worth noting that during 2021 and 2022, COVID-19 containment was prioritized over environ-
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mental protection. As a result, when counties were categorized as Risk regions, local governments

may have relaxed environmental restrictions, leading to increased pollution. This could potentially

lead us to overestimate the change in pollution level associated with the implementation of the

zero-COVID policy.

4.4 Night Lights

Finally, we present empirical evidences related to night lights (nighttime light). We use the

following models:

NightLightit = βDit + Xit ×α+ µi + θt + πit,j + εit

NightLightit =
−2∑

k=−5

βkD
k
it +

5∑
k=0

βkD
k
it + Xit ×α+ µi + θt + πit,j + εit

where NightLightit represents the night lights level at county i during month t, taking natural

log. For the sample period of 2020, Dit is an indicator for lockdown launched in county i during

month t or not. For the sample period of 2021 or 2022, Dit is a binary variable equal to 1 if any

community within county i during month t is classified as a Risk area and 0 otherwise. We control

county fixed effects µi and month fixed effects θt. Xit include daily confirmed COVID-19 cases

and weather factors. We also include prefecture by month fixed effects for robustness, where πit,j

denotes prefecture by month fixed effects, taking a value of 1 for any county i within prefecture j

during month t and 0 otherwise.

Similar to the effects on PM2.5, we found divergent effects of the zero-COVID policy on night

lights over the sample periods, which are presented in Table 4. In column (1), we find the lockdown

implementation has a significantly negative coefficient at -0.0391, which implies counties that

underwent lockdowns in 2020 had a 4% decrease in night lights compared to counties that did

not implement lockdowns. In columns (2) and (4), we report the estimations for the zero-COVID

policy in 2021 and 2022. In 2021, we observed a positive correlation between the implementation

of the zero-COVID policy and the changes in night lights, while in 2022, the zero-COVID policy

reduced 14% economic activities proxied by night lights. In 2021, compared to the county-specific

economic growth trend, the change in night lights associated with the less stringent zero-COVID
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policy in 2021 was negligible, as it only imposed restrictions in a limited number of communities

within the county. However, in 2022, with the emergence of the highly contagious Omicron variant,

the zero-COVID policy became stricter and seriously disrupted economic activities. We show the

robustness of our results in columns (3) and (5) by controlling for prefecture by month fixed effects,

and find that the coefficients remain statistically significant at the 1% level.

The dynamic effect results in Figure 7 provide further support for our argument. To allow for

heterogeneity in the treatment effect over time and across treated units, we include the robust

estimators of Sun and Abraham (2021) in the figures. In 2020, lockdowns occurred mostly during

the early phase of the pandemic, severely affecting the economic environment and consumer confi-

dence. As shown in Figure 7a, the negative impact of lockdown on the night lights was significant

and persistent, lasting more than five months after the event date, with no signs of recovery. In

2021, shown in Figure 7b, a slight increasing trend of night lights is associated with the probability

that a county is categorized as a Risk region. A possible explanation is that counties that had

more active economic performance were more likely to be classified as Risk regions while also expe-

riencing faster economic recovery. However, in 2022, as shown in Figure 7c, the decreasing trend

was evident, with all treatment effects negative and significant after the implementation of the

zero-COVID policy. The magnitude of the negative impact continued to expand until four months

after the county was categorized as a Risk region, with no complete recovery observed. This implies

that the zero-COVID policy in 2022 brought persistent negative impacts to local economies, which

may have contributed to the end of the era of zero-COVID policy and the reopening in December

2022.

It should be noted that, in Figure 7b, we observe positive pre-trend and post-trend that are

significantly away from zero. This indicates that, compared to the difference in night lights between

the treated and control groups in the baseline period t = −1, these differences in night lights are

larger between two groups in periods at least two months before or after the implementation of the

zero-COVID policy. As the zero-COVID policy is unlikely to bring more economic opportunities to

the region due to its nature of suppressing human activities, this result could be explained by the

positive correlation between the likelihood that a county will be classified as a Risk region and its
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county-specific economic growth trend in 2021. As shown in Figure A2a, only a small proportion

of regions in China experienced the zero-COVID policy in 2021. It is plausible that a county in a

more economically developed prefecture could enjoy a stronger recovery from the pandemic shock

in 2020 and display a higher economic growth rate in 2021. Meanwhile, such prefectures were more

likely to experience a pandemic outbreak in 2021. As shown in previous Section 4.1 as well as in

Figure 2, the COVID-19 outbreaks in 2021 were usually on small scales and the zero-COVID policy

in 2021 lasted for relatively short periods. Therefore, the persistent impact of the zero-COVID

policy could be very limited in 2021. As a result, these counties could pick up the economic growth

trend from the disruption of the zero-COVID policy quickly and continue with strong economic

performance even after the zero-COVID policy. This potentially explains the positive estimated

influence of the zero-COVID policy on night lights in 2021, as shown in columns (4)-(5) of Table 4,

as well as the upward trend of dynamic effects after the treatment of zero-COVID in Figure 7b.

We provide back-of-the-envelope calculations of the GDP loss caused by the zero-COVID policy

in 2022. We replicate the original dataset used in Martinez (2022) and calculate the elasticity

between GDP and night light. The calculation shows that a 1% change in night lights corresponds

to a 0.858% change in China’s GDP. Then, as shown in Panel B of Table 1, by the end of December

2022, zero-COVID policies had been implemented in 1700 out of 2853 counties in China. Finally,

based on our calculation, the economic loss can be estimated as 0.077∗0.858∗1700/2853 = 0.039,25

suggesting that the zero-COVID policy resulted in a reduction in China’s GDP of approximately

3.9%. Interpreting the results from this back-of-the-envelope calculation should be approached

with caution due to two major limitations: (1) the estimated policy effects derived from the DiD

setting may be subject to bias due to spillover effects; (2) the elasticity estimated from the data

of Martinez (2022) does not consider the regional heterogeneity within China. In the presence of

heterogeneity between counties affected by the zero-COVID policy and counties not affected, this

calculation could be inaccurate.
25We choose policy effect as .077, from Column 5 of Table 4
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4.5 Spillover Effect Results

When two adjacent regions exhibit a close economic linkage, the implementation of human ac-

tivity restrictions, such as a zero-COVID policy, in one region could exert an impact on activities

in the other. This spatial correlation poses a potential bias in our difference-in-difference estima-

tion. To isolate the spillover effects of zero-COVID policy in neighboring regions, we introduce a

control variable for adjacent treated areas, following the spirit of literature on spillover effects in

difference-in-difference settings (Clarke, 2017), as well as on peer effects (Goldsmith-Pinkham and

Imbens, 2013). Specifically, we define a control variable termed “Neighbors Risk” as follows:

Neighbors Riskit =

∑
j∈I\i DjtRij∑

j∈I\i Rij

where for any two regions i, j ∈ I at any period t, Djt is a dummy variable for whether j is

under the zero-COVID policy at t, Rij is a dummy variable for whether a pair of prefectures i, j

is neighboring. Consequently, Neighbors Riskit calculates the proportion of neighboring regions

implementing a zero-COVID policy relative to all adjacent regions for a given region i at time t.

We incorporate this constructed “Neighbors Risk” variable, along with its lagged terms, into

the primary regression models presented in prior sections. Note that to fully capture the potential

spatial correlation, a spatial econometric model, such as Spatial Durbin model (SDM) is desired.

Our approach only accounts for the proximate (lagged) spillover effects from zero-COVID policies in

neighboring regions during 2021 and 2022. The resulting regression results for mobility, pollution,

and night lights are presented in Table 5, Table 6, and Table 7, respectively.

In columns (1), (3), (5), and (7) of Table 5, we present the baseline estimates initially showcased

in Table 2. Correspondingly, columns (2), (4), (6), and (8) offer estimates of local policy effects

on traffic mobility that are robust to spillover influences. Across all these specifications, the

local estimates exhibit only negligible variations when compared to the original findings. There

is no statistically significant negative spillover effect from adjacent zero-COVID policies in 2021.

However, a notable negative impact emerges in 2022, consistent with our earlier results that the

stringent zero-COVID measures in 2022 exerted a more pronounced adverse effect on economic
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activities than those in 2021.

In columns (1) and (3) of Table 6, we offer the baseline estimates for pollution outcomes from

Table 3, while columns (2) and (4) include regression results accounting for spillover effects. No

substantive changes are observed compared to the original estimations, and negative, statistically

significant spillover effects are found for both 2021 and 2022. Given that PM2.5 concentration

data are extracted from satellite image and aggregated at the county level, it is plausible that the

implementation of a zero-COVID policy in a neighboring county could reduce pollution levels in

adjacent areas due to restricted traffic mobility and manufacturing.

In columns (1) and (3) of Table 7, we present the baseline estimates for night light data

from Table 4 and include spillover-adjusted regression results in columns (2) and (4). Again, the

estimates remain substantively unchanged compared to the original findings, and no statistically

significant spillover effects on night lights are observed for either 2021 or 2022. This suggests that

long-term economic activities, as reflected by night light data, are unlikely to be influenced by

zero-COVID policies in nearby regions.

4.6 Synthetic Diff-in-Diff Results

As mentioned in Section 4.4, potential selection bias may exist within the treated sample.

Specifically, regions with greater economic development could be more susceptible to experiencing

COVID-19 outbreaks, thereby making it more likely for them to implement the zero-COVID policy

and consequently be included in the treatment group. In estimating the impact of zero-COVID

policy implementation on economic outcomes like pollution and night lights, uncontrolled county-

level time-varying trends could raise concerns regarding the validity of our estimated results.

To enhance the comparability between the treatment and control groups in our empirical

examination of pollution and night lights, we conduct several auxiliary regressions employing

the Synthetic Difference-in-Differences (SDID) method, a fusion of the Difference-in-Differences

and Synthetic Control methodologies (Arkhangelsky et al., 2021). The SDID approach assigns

weights to individual fixed effects and time fixed effects to approximate the pretrends between the

treatment and control groups, thereby mitigating the reliance on the parallel trends assumption
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and generating more stable and robust estimates. It is noteworthy that, to comply with the SDID

framework, we keep a balanced sample, resulting in a reduced sample size. We also disclose the

outcomes of our primary regressions utilizing the balanced sample in Table A1 and Table A2 for

reference.

We present our SDID estimations for pollution and night lights in Table 8 and Table 9, re-

spectively. In column (1) of Table 8, the impact of lockdowns on PM2.5 concentration remains

significantly negative. In column (2) of Table 8, the estimated changes in PM2.5 following the

initiation of zero-COVID policy retain the same sign as the original estimate. In column (3), the

estimated coefficient shifts from negative to positive, though with a relatively small magnitude.

These outcomes align with our prior findings presented in the dynamic effect results of Figure 6.

Specifically, local pollution showed a marked decline post-lockdown in 2020; its trend began to

rise a few weeks following the implementation of the zero-COVID policy in 2021; and in 2022, the

pollution exhibited a short-lived dip but did not sustain it.

In Table 9, we observe similar results for changes in night lights correlated with zero-COVID

policy, compared with the original estimates in Table 4. The estimated coefficient for 2020 remains

negative, though its statistical significance diminishes, while the results for 2021 and 2022 retain

their original signs and are statistically significant. In summary, despite potential confounding

factors involving the relationship between the implementation of zero-COVID policy and pre-

treatment economic trends, our SDID estimations reaffirm the robustness of our primary regression

outcomes and are consistent with our other findings.

5 Conclusions

In this paper, we provide evidence on the economic impacts of the zero-COVID policy imple-

mented by the Chinese government as a pilot experiment in using big data for country manage-

ment from 2020 to 2022. We employ a difference-in-differences specification with a novel dataset

of China’s COVID-19 risk level system. First, we find that the zero-COVID policy in China effec-

tively contained COVID-19 transmission within a 21-day window in 2021. However, controlling

virus transmission took twice as long with the emergence of the Omicron variant in 2022. Second,
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the zero-COVID policy led to a 30% reduction in inflow and outflow mobility, indicating a poten-

tial negative impact on the transportation industry and related sectors. Third, our study indicates

that the zero-COVID policy had a negligible effect on pollution levels in 2021. Nevertheless, it led

to a decrease in PM2.5 concentration in the estimated range of 1.17% to 3.47% in 2022. Lastly,

the evidence reveals that the zero-COVID policy had trivial impacts on night lights in 2021, which

was overshadowed by the strong economic performance due to the recovery effect. However, we

discover a significant reduction in economic activities proxied by night lights, ranging from 7.7%

to 14%, as a result of the implementation of the zero-COVID policy in 2022. We calculate that

the zero-COVID policy resulted in a reduction of approximately 3.9% in GDP.

Several other countries pursued an elimination strategy like China, with strict border controls

and lockdowns to keep the virus at bay, for example, New Zealand, Australia, Singapore, Viet-

nam, and Thailand. Studies generally show that COVID-19 has had a negative impact on these

economies, especially for the countries that rely heavily on tourism and international trade (Dang

et al., 2023; Bui et al., 2022; Fouda et al., 2020; O’Sullivan et al., 2020). Most countries expe-

rienced an economic contraction during the initial stage of the pandemic, but were able to have

a quick rebound since their proactive response to the pandemic had effectively minimized cases

infected. An exact comparison of economic impacts between China and these countries, however,

is not feasible because the strictness of containment policies enforced by different countries varies,

and some countries shift their strategies in response to changing circumstances at different times.

Overall, our findings offer important insights into the effectiveness and limitations of the zero-

COVID policy in controlling the spread of COVID-19, as well as its impact on various aspects of

the economy and society. These insights can inform the design and implementation of big data-

driven public health policies that aim to reduce the impact of public health crises and minimize

economic costs in China.
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6 Figures and Tables

6.1 Figures

Figure 1: Daily Confirmed Cases v.s. Number of Counties with Risk (excluding Shanghai)

31



Figure 2: Distribution of Risk Duration per County
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Figure 3: Event Study: Daily Confirmed Cases

(a) Lockdown 2020

(b) Risk 2021 (c) Risk 2022
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Figure 4: Event Study: Inflow Mobility

(a) Lockdown 2020

(b) Risk 2021 (c) Risk 2022
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Figure 5: Event Study: Outflow Mobility

(a) Lockdown 2020

(b) Risk 2021 (c) Risk 2022
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Figure 6: Event Study: PM2.5

(a) Lockdown 2020

(b) Risk 2021 (c) Risk 2022
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Figure 7: Event Study: Night Light

(a) Lockdown 2020

(b) Risk 2021 (c) Risk 2022
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6.2 Tables

Obs Mean Std.Dev Min Max
Panel A: County Panel ref.
Classified as Risk (County) 1777419 0.026 0.159 0.0 1
Night Lights (monthly) (Watts/cm2/sr) 45350 2.420 4.457 0.1 53
PM2.5 (weekly) (µ/m3) 253352 26.665 15.070 0.4 394
Panel B: County by Dec15,2022 ref.
Cumulative Days Classified as Risk (County) 2853 16.095 23.231 0.0 243
Cumulative Days Classified as Risk (Exclude Never Treated) 1700 27.011 24.716 1.0 243
Panel C: Prefecture Panel ref.
Classified as Risk (Pref) 229264 0.074 0.262 0.0 1
Share of counties Classified as risk (Pref) 229264 0.025 0.117 0.0 1
Num of Counties Classified as Risk (Pref) 229264 0.200 1.025 0.0 35
Daily Confirmed COVID Cases 657218 0.545 47.862 0.0 23718
Inflow Mobility 179041 0.281 0.313 0.0 4.039
Outflow Mobility 175695 0.281 0.321 0.0 4.671
Panel D: Prefecture by Dec15,2022 ref.
Cumulative Days Classified as Risk (pref) 368 46.220 41.815 0.0 250
Cumulative Confirmed COVID Cases 356 1001.298 5239.218 1.0 64978

Table 1: Statistical Summary
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7 Appendix

7.1 Appendix A: China’s COVID Risk Level Database

In order to comply with the Prevention Guidance for Novel Coronavirus Pneumonia (version

5),26 starting from March 2020, the State Council of China began to release a national COVID

risk level system on a regular basis through their website. This system categorizes communities

within the 2853 counties into high, medium, or low-risk groups on a daily basis. In specific, the

risk level is reported by local governments and compiled by National Health Commission of China.

This website had two access interfaces. Interface A on the left column of Figure A1 is a search

engine that allows users to obtain communities’ risk level results for a specific county by entering

its name. Interface B, located in the right column, displays all counties that have communities

classified as Risk along with their corresponding community names. Counties that do not appear

on this list are considered non-risk areas.27

We started risk level data collection through interface B since April 02, 2021 and ended by Dec

15, 2022.28 29 The China COVID Risk Level Database contains daily risk level information for

2853 counties from April 02, 2021 to December 15, 2022. This database is the most systematic

compilation of China’s risk level classification during 2021 and 2022.

7.2 Appendix B: Figures

26Prevention Guidance for Novel Coronavirus Pneumonia (version 5): http://www.nhc.gov.cn/jkj/s3577/
202002/a5d6f7b8c48c451c87dba14889b30147.shtml and a follow up guidance: http://www.gov.cn/zhengce/
zhengceku/2020-04/16/content_5503261.htm

27The web links for both pages have already expired. Interface A: bmfw.www.gov.cn/yqfxdjcx/index.html and
Interface B: bmfw.www.gov.cn/yqfxdjcx/risk.html

28The weblink of interface B expired on Dec 15, 2022. But the weblink of interface A was still active until Dec 25,
2022, we collected the data between Dec 15 to Dec 25 through a third party website, http://bj.bendibao.com/
but did not integrate the last 10 days data into our dataset yet.

29We thank open-source projects BeautifulSoup and Selenium.
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Figure A1: Demo of State Council’s website for the Risk Level System.

(a) Interface A

12/23/22, 1:52 AM [卫生健康委]疫情风险等级查询_便民服务_服务_中国政府网

bmfw.www.gov.cn/yqfxdjcx/index.html 1/2

收藏

简 | 繁 | EN | 注册 | 登录

 

国务院 总理 新闻 政策 互动 服务 数据 国情 国家政务服务平台

首页 > 服务 > 便民服务 >  [卫生健康委]全国疫情风险区域

常态化防控区域

截至2022-12-23 09时

有关信息来自各地确定的疫情风险等级

本服务由国家卫生健康委提供

行政区域选择

北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江

安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆

四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 新疆 香港

澳门 台湾

上海市

上海市

上海市

黄浦区 徐汇区 长宁区 静安区 普陀区 虹口区 杨浦区 闵行区 宝山区 嘉定区 浦东新区

金山区 松江区 青浦区 奉贤区 崇明区

(b) Interface B

Figure A1:

Notes: The web links for both pages have already expired.
Interface A: bmfw.www.gov.cn/yqfxdjcx/index.html

and Interface B: bmfw.www.gov.cn/yqfxdjcx/risk.html
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Figure A2: Geographical Distribution of counties with Risk

(a) Risk 2021

(b) Risk 2022
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Figure A3: Night Lights in March 2022

Figure A3:

Note: This is the filtered data of Night Lights in March 2022 obtained from VIIRS, combine with
the shapefile of China’s county boundary.

7.3 Appendix C: Tables
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